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ABSTRACT
Energy infrastructure is widespread worldwide. Renewable energy technologies, which are expanding their footprint
on the landscape and their contribution to energy availability, represent a different kind of infrastructure from
extractive energy technologies. Although renewable energy sources may offer a ‘greener alternative’ to traditional
extractive energy sources, mounting evidence suggests that renewable energy infrastructure, and the transmission
lines needed to convey energy from renewable energy facilities to users, may impact birds. Peer-reviewed literature
historically has focused on the direct effects of electrocution and, to a lesser extent, collisions with overhead power
systems, and on avian collisions at wind energy facilities, with less consideration of indirect effects or other energy
sectors. Here, we review studies that have examined direct and indirect effects on birds at utility-scale onshore wind-
and solar-energy facilities, including their associated transmission lines. Although both direct and indirect effects
appear site-, species-, and infrastructure-specific, generalities across energy sectors are apparent. For example, large-
bodied species with high wing loading and relatively low maneuverability appear to be especially susceptible to direct
effects of tall structures, and the risk of collision is likely greater when structures are placed perpendicular to flight
paths or in areas of high use. Given that all infrastructure types result in direct loss or fragmentation of habitat and may
affect the distribution of predators, indirect effects mediated by these mechanisms may be pervasive across energy
facilities. When considered together, the direct and indirect effects of renewable energy facilities, and the transmission
lines serving these facilities, are likely cumulative. Ultimately, cross-facility and cross-taxon meta-analyses will be
necessary to fully understand the cumulative impacts of energy infrastructure on birds. Siting these facilities in a way
that minimizes avian impacts will require an expanded understanding of how birds perceive facilities and the
mechanisms underlying direct and indirect effects.
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Actualización de las interacciones entre aves y las estructuras de energı́a renovable

RESUMEN
La infraestructura energética está ampliamente distribuida en todo el mundo. Las tecnologı́as de energı́a renovable
están expandiendo su huella en el paisaje y su contribución a la disponibilidad de energı́a, y representan un tipo
diferente de infraestructura a la de las tecnologı́as extractivas de energı́a. Aunque las fuentes de energı́a renovable
ofrecen una ‘‘alternativa más verde’’ en comparación con las fuentes tradicionales de extracción de energı́a, existe
bastante evidencia que sugiere que la infraestructura de energı́a renovable y las ĺıneas de transmisión necesarias para
transportar la energı́a hacia los usuarios podrı́an afectar a las aves. La literatura cientı́fica tradicionalmente se ha
enfocado en los efectos directos de la electrocución y, en menor medida, en las colisiones con los sistemas aéreos de
energı́a y con las estructuras de energı́a eólica. En cambio, ha habido escasa consideración de sus efectos indirectos y
de otros sectores energéticos. En este trabajo revisamos estudios que investigaron los efectos directos e indirectos
sobre las aves a la escala de instalaciones terrestres de energı́a eólica y solar, incluyendo sus ĺıneas de transmisión.
Aunque los efectos directos e indirectos parecen ser especı́ficos para cada sitio, especie y tipo de energı́a, existen
generalidades evidentes entre diferentes sectores energéticos. Por ejemplo, las especies de mayor tamaño, con alta
carga alar y maniobrabilidad relativamente baja parecen ser especialmente susceptibles a los efectos directos de las
estructuras altas, y el riesgo de colisión probablemente es mayor cuando las estructuras se ubican perpendiculares al
sentido del vuelo o en áreas con alto uso. Dado que todos los tipos de infraestructura resultan en la pérdida directa del
hábitat o en su fragmentación y podrı́an afectar la distribución de los depredadores, los efectos indirectos mediados
por estos mecanismos pueden ser comunes entre diferentes instalaciones energéticas. Cuando se consideran en
conjunto, los efectos directos e indirectos en las instalaciones de energı́a renovable y en las lı́neas de transmisión
asociadas probablemente son acumulativos. Finalmente, será necesario hacer meta análisis a través de varios tipos de
instalaciones y taxones para entender completamente los impactos acumulativos de la infraestructura energética
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sobre las aves. La localización de estas instalaciones de forma que minimice el impacto sobre las aves requerirá un
mayor entendimiento acerca de cómo las aves perciben las instalaciones y de los mecanismos que subyacen a los
efectos directos e indirectos.

Palabras clave: aves, efectos directos, efectos indirectos, eólico, ĺıneas de energı́a, mitigación, solar

Concerns regarding the depletion of fossil fuels, global

climate change, and energy security have triggered rapid

growth in the use of renewable energy technologies. For

example, in the United States (U.S.), wind energy capacity

increased by ~140% from 25,000 megawatts (MW) in 2008

to .61,000 MW in 2013 (American Wind Energy

Association 2014). Collectively, ~13% of U.S. electricity

generated in 2014 was derived from renewable energy

sources (e.g., biomass [1.7%], geothermal [0.4%], hydro-

electric [6.0%], solar [0.4%], and wind [4.4%]; U.S. Energy

Information Administration 2015a). Continued growth of

the wind energy sector is predicted to meet the U.S.’s wind

energy target of 20% of all energy used by 2030 (U.S.

Department of Energy 2008). Although government

targets are centered on wind energy, the expansion of

other renewable energy sectors also is expected (U.S.

Energy Information Administration 2015b). In particular,

projections suggest that the solar energy sector could meet

14% of electricity demands in the contiguous U.S. by 2030

and 27% by 2050 (U.S. Department of Energy 2012).

Renewable energy as a ‘greener alternative’ to the

combustion of fossil fuels offers important environmental

benefits over traditional energy sources, such as reduc-

tions in greenhouse gas emissions (Panwar et al. 2011).

Yet, increasing evidence of direct and indirect effects has

raised concerns regarding the potential impacts of

renewable energy infrastructure on birds. Avian collisions

with wind turbines (i.e. direct effects) are well document-

ed and have received the most attention to date (e.g.,

Smallwood and Thelander 2008, Loss et al. 2013, Morinha

et al. 2014). In comparison, studies of the direct effects of

other types of renewable energy infrastructure on birds

have been limited (but see McCrary et al. 1986, Lovich

and Ennen 2011). Further, relatively few studies have

considered the potential for indirect effects on avian

behavior, spatial ecology, or demographics resulting from

increased disturbance, changes in trophic interactions, or

changes in habitat availability and connectivity (reviewed

by Drewitt and Langston 2006, Zwart et al. 2016a).

Renewable energy infrastructure often is accompanied by

the construction of new transmission lines to connect

renewable energy facilities to the existing power line

network. Thus, the direct and indirect effects of multiple

infrastructure types at renewable energy facilities need to

be considered to identify the cumulative effects of a

national (and global) transition from extractive to

renewable energy production.

Of the studies that have assessed interactions between

renewable energy infrastructure and birds, many have

primarily targeted specific management crises, often focus-

ing on species of conservation concern (e.g., Greater Sage-

Grouse [Centrocercus urophasianus]: LeBeau et al. 2014;

Greater Prairie-Chicken [Tympanuchus cupido]: Smith et al.

2016) in areas targeted for development (e.g., the Great

Plains of North America; Harrison 2015, Whalen 2015,

Winder et al. 2015). Thus, studies have been necessarily

limited and inconsistent in the focal species addressed,

experimental design, and study site. As a consequence,

developing general siting guidelines andmitigation strategies

for new facilities remains challenging. Given the projected

increase in renewable energy infrastructure throughout the

U.S. (U.S. Department of Energy 2008, U.S. Energy

Information Administration 2015b), it is critical that we

develop a more comprehensive understanding of the effects

of renewable energy infrastructure on birds so that informed

siting guidelines can be developed and implemented.

Here, we review recent studies of the direct and indirect

effects on birds from utility-scale onshore wind- and solar-

energy facilities and their accompanying transmission lines.

We focused on these energy sectors because of their

projected increase in the U.S. (U.S. Department of Energy

2008, U.S. Energy Information Administration 2015b). Our

goals were to: (1) provide an up-to-date and consolidated

summary of direct and indirect impacts of utility-scale

onshore wind- and solar-energy infrastructure and associ-

ated power lines on birds based on peer-reviewed literature;

(2) use our findings to inform siting guidelines; and (3)

highlight important knowledge gaps and areas for future

research.

KNOWN IMPACTS OF UTILITY-SCALE ONSHORE WIND-

AND SOLAR-ENERGY INFRASTRUCTURE ON BIRDS

To summarize the impacts of utility-scale renewable

energy infrastructure, we conducted a literature review to

identify studies that empirically tested the effects of energy

infrastructure on birds (i.e. not commentaries or predictive

studies). We did so by using combinations of the following

search terms in Web of Science (formerly ISI Web of

Knowledge; Thomson Reuters, Philadelphia, Pennsylvania,

USA): avian, bird, collision, conservation, electrocution,

photovoltaic cell, renewable energy infrastructure, solar

energy, transmission power line, wind energy, wind farm,

and wind resource area.
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Onshore Wind Energy
Direct effects. The direct effects of wind energy

development on birds have received considerable attention

(e.g., Smallwood and Thelander 2008, Loss et al. 2013,

Erickson et al. 2014). Collisions between birds and onshore

wind turbines result in impact trauma, which can result

directly in death or render birds more susceptible to

predation. Collisions have been documented for a wide

range of taxa, including ducks (Johnson et al. 2002), grouse

(Zeiler and Grünschachner-Berger 2009), raptors (De

Lucas et al. 2008), and songbirds (Morinha et al. 2014).

Of specific concern are fatalities of species of conservation

concern (e.g., Western Burrowing Owl [Athene cunicularia

hypugaea]; Smallwood et al. 2007) and species with small

populations, delayed maturity, long lifespans, and low

reproductive rates, for which even a few mortalities can

have population-level effects (e.g., Golden Eagle [Aquila

chrysaetos]: Lovich 2015; White-tailed Eagle [Haliaeetus

albicilla]: Dahl et al. 2012). While the number of birds

affected is uncertain (Pagel et al. 2013), estimates adjusted

for searcher detection and scavenger removal suggest that

between 140,000 and 328,000 birds are killed annually by

collisions with turbines at wind energy facilities in the

contiguous U.S. (Loss et al. 2013). For songbirds in
particular, fatalities at wind energy facilities in the U.S.

and Canada are estimated to be between 134,000 and

230,000 annually (Erickson et al. 2014). Avian collisions

with turbines also have been documented outside the U.S.

(e.g., Australia: Hull et al. 2013; Canada: Zimmerling et al.

2013; Japan: Kitano and Shiraki 2013; South Africa: Doty

and Martin 2013; Western Europe: Everaert and Stienen

2007, De Lucas et al. 2012, Morinha et al. 2014), suggesting

that the direct effects of wind energy facilities are of

concern globally.

Intuitively, mortality rates at wind energy facilities

should be related to avian abundance (Carrete et al.

2012), but a more complex suite of site-specific factors

may be important (De Lucas et al. 2008, Marques et al.

2014). For example, habitats or prey that promote foraging

at wind energy facilities are likely to increase collision rates

(Barrios and Rodŕıguez 2004, Smallwood et al. 2007).

Collisions may also increase when turbines are sited on

landscape features, including cliffs and steep slopes, that

are regularly used by hunting or migrating birds (e.g., Black

Kite [Milvus migrans]; Kitano and Shiraki 2013). Weather

may further increase collision risk when visibility around

turbines is reduced (Kerlinger et al. 2010). For species that

exploit thermals, the risk of collision may increase during

weather that forces birds to gain lift from topographical

features near wind turbines (Barrios and Rodŕıguez 2004,

De Lucas et al. 2008). Collisions during migration may be

particularly important because they have the potential to

indirectly affect breeding populations far beyond the wind

energy facility. Because most conservation efforts in North

America are focused on breeding habitat, migration

mortality can be a cryptic and often unrecognized effect

of wind turbines.

Collision rates can additionally be affected by the

design features of wind turbines. For example, collision

rates between Western Burrowing Owls and wind

turbines were highest at vertical axis towers, lower at

tubular towers, and lowest at lattice towers, correspond-

ing with a decline in the ability to see through the

infrastructure type (Smallwood et al. 2007). Conversely,

mortality rates of Eurasian Kestrels (Falco tinnunculus)

and Eurasian Griffons (Gyps fulvus) were equivalent

between tubular and lattice towers at a wind energy

facility in the Straits of Gibraltar (Barrios and Rodrı́guez

2004). As turbine height increases, species that rely on

lift for flight may become more susceptible to collisions

(e.g., Eurasian Griffons; De Lucas et al. 2008), as may

species that typically fly at higher altitudes (Loss et al.

2013). Turbine rotor diameter may also increase mortal-

ity rates through increasing the area within which birds

are at risk (Loss et al. 2013; but see Barclay et al. 2007).

For species attracted to artificial light sources (e.g.,

nocturnal migrants; Gauthreaux and Belser 2006), the

use of steady-burning lights at facilities may increase
mortality rates (Kerlinger et al. 2010). However, the use

of flashing red lights at wind energy facilities, as

recommended by the Federal Aviation Association, does

not appear to influence collision rates between infra-

structure and nocturnal migrants (Kerlinger et al. 2010).

Fatalities may also increase when turbines are positioned

perpendicularly to regular flight paths of birds; 90–95%

of tern (Sterna spp.) fatalities at a wind energy facility in

Belgium resulted from collisions with turbines posi-

tioned in a line perpendicular to their flight path

between the breeding colony and feeding grounds

(Everaert and Stienen 2007). Similarly, wind energy

facilities sited along migration pathways may result in

more migrant birds being killed than resident birds

(Johnson et al. 2002).

Direct mortality also varies by species. Species that

forage on the ground are less likely to collide with

turbines compared with species that use aerial foraging

(Hull et al. 2013). Similarly, aerial foragers that forage

within rotor-swept areas and that appear to focus more

on prey than on turbine blades are more susceptible to

direct mortality than those that exercise caution around

turbines (e.g., American Kestrel [Falco sparverius] vs.

Northern Harrier [Circus cyaneus]; Smallwood et al.

2009). Also at risk are species that frequently engage

with conspecifics during aerial territorial conflicts (e.g.,

Golden Eagle; Smallwood and Thelander 2008, Small-

wood et al. 2009). Collision risk may be further elevated

for species with visual fields that may prohibit them from

detecting structures (e.g., wind turbines) directly ahead
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of them (e.g., vultures in the genus Gyps; Martin 2011,

Martin et al. 2012), or for large species with weak-

powered flight and high wing loading that rely on

thermals for lift and thus have relatively low maneuver-

ability in flight (e.g., Eurasian Griffon; De Lucas et al.

2008). Vulnerability to turbine collisions may also vary

within species for which sex-specific behaviors result in

one sex spending more time within rotor-swept areas.

For example, heightened foraging activity of male terns

during egg-laying and incubation at a wind energy

facility in Belgium resulted in male-biased mortality

(Stienen et al. 2008). Similarly, song flights performed by

male Sky Larks (Alauda arvensis) during the breeding

season at a wind energy facility in Portugal increased

collision risk, resulting in male-biased mortality (Mori-

nha et al. 2014).

Indirect effects. To date, most studies of indirect

effects have focused on the displacement of birds from

wind energy facilities. Displacement, typically measured

via telemetry or point counts, has been documented for a

wide range of taxa including geese (Larsen and Madsen

2000), ducks (Loesch et al. 2013), raptors (Pearce-Higgins

et al. 2009, Garvin et al. 2011), grouse (Pearce-Higgins et

al. 2012), shorebirds (Pearce-Higgins et al. 2009, 2012,

Niemuth et al. 2013), and songbirds (Pearce-Higgins et al.

2009, Stevens et al. 2013). While the mechanisms driving

displacement are poorly understood, loss or degradation

of habitat may be important, especially for habitat

specialists (e.g., Le Conte’s Sparrow [Ammodramus

leconteii]; Stevens et al. 2013), and may be compounded

for species that are sensitive to turbine noise, construc-

tion noise, or tall structures (e.g., geese: Larsen and

Madsen 2000; raptors: Garvin et al. 2011, Johnston et al.

2014). The latter may be especially relevant in open areas

(e.g., grasslands), where species may be sensitive to tall
structures, including wind turbines and power poles (e.g.,

prairie grouse; Hovick et al. 2014). While some species

appear sensitive to wind energy development, evidence

for the displacement of other species is either minimal or

site-specific (e.g., Sky Lark: Devereux et al. 2008;

Savannah Sparrow [Passerculus sandwichensis]: Stevens

et al. 2013; Montagu’s Harrier [Circus pygargus]: Her-

nández-Pliego et al. 2015; Eastern Meadowlark [Sturnella

magna]: Hale et al. 2014), and some species may even be

attracted to wind energy facilities (e.g., Killdeer [Chara-

drius vociferus]; Shaffer and Buhl 2016). Moreover,

sensitivity to wind energy development may not always

be reflected through changes in spatial ecology, but

instead through other behaviors (e.g., lekking; Smith et al.

2016). Birds that avoid wind energy facilities during and

immediately following construction may fail to show

avoidance behavior thereafter (Madsen and Boertmann

2008, Pearce-Higgins et al. 2012), perhaps minimizing

long-term effects in those species. Alternatively, some

species may exhibit a delayed response to wind energy

facilities, tolerating disturbance immediately following

construction, but avoiding the site thereafter (e.g.,

Grasshopper Sparrow [Ammodramus savannarum];

Shaffer and Buhl 2016).

Wind energy facilities may also indirectly affect breeding

performance. For example, distance to a turbine negatively

affected nest survival of Greater Sage-Grouse (LeBeau et

al. 2014), but had little effect on nest survival of Red-

winged Blackbirds (Agelaius phoeniceus; Gillespie and

Dinsmore 2014), Greater Prairie-Chickens (McNew et al.

2014, Harrison 2015), and McCown’s Longspurs (Rhyn-

chophanes mccownii; Mahoney and Chalfoun 2016). In

contrast, Scissor-tailed Flycatchers (Tyrannus forficatus)

nesting in sites close to a 75-turbine wind energy facility in

Texas had higher nest survival compared with their

counterparts nesting in sites farther away (Rubenstahl et

al. 2012). Similarly, Hatchett et al. (2013) documented

higher nest success for Dickcissels (Spiza americana)

nesting near, compared with far from, a wind energy

facility in Texas. However, the authors stressed that habitat

configuration across the study site, not proximity to

turbines, may have underpinned their results.

Wind energy development may also influence adult

survival, but, again, effects are likely to be site- and species-

specific. For example, annual survival of female Greater

Prairie-Chickens increased postconstruction compared
with preconstruction of a wind energy facility in Kansas

(Winder et al. 2014). In contrast, distance to a turbine did

not affect the survival of female Greater Prairie-Chickens

breeding along a 25-km gradient at a wind energy facility

in Nebraska (J. A. Smith personal observation). Similarly,

the survival of female Greater Sage-Grouse breeding in the

vicinity of a wind energy facility in Wyoming was

unaffected by distance to a turbine (LeBeau et al. 2014).

Despite continuing efforts to assess the indirect effects

of wind energy development on birds, the underlying

mechanisms are seldom evaluated. For species targeted by

brood parasites, a reduction in parasitism rates at wind

energy facilities may increase nest success; Blue-gray

Gnatcatchers (Polioptila caerulea) nesting close to a wind

energy facility in Texas had a lower probability of nest

parasitism by Brown-headed Cowbirds (Molothrus ater)

and, subsequently, higher nest success than birds farther

away. While it remains unclear why parasitism rates were

lower at the wind energy facility, disturbance at the site

may have impeded the ability of Brown-headed Cowbirds

to detect nests (Bennett et al. 2014).

Changes in predator abundance may be key to

understanding the indirect effects of wind energy devel-

opment on measures of breeding success and adult

survival (Rubenstahl et al. 2012, LeBeau et al. 2014,

Winder et al. 2014). For example, avoidance of wind

energy facilities by raptors (Pearce-Higgins et al. 2009,
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Garvin et al. 2011), or by mammalian predators due to

increased disturbance associated with human activity

(Gese et al. 1989, Gehrt et al. 2009), may reduce predation

risk at sites close to wind energy facilities, consequently

increasing survival. Alternatively, the presence of carcasses

under wind turbines due to collision-induced mortalities

may attract mammalian predators (Smallwood et al. 2010,

Rogers et al. 2014), whose presence will, in turn, decrease

survival. Despite these expectations, to our knowledge only

one study has evaluated predation risk as a possible

mechanism underlying survival by simultaneously assess-

ing occupancy of predators and survival of Greater Prairie-

Chickens. Site occupancy of avian predators in the vicinity

of a wind energy facility in Nebraska was significantly

lower within, compared with 2 km beyond, the wind

energy facility (J. A. Smith personal observation). In

contrast, mammalian predator site occupancy was unaf-

fected. Although no effect was found on the survival of

Greater Prairie-Chickens, the study provides evidence of

an ecological mechanism that could have important
implications for a wide range of species at risk from wind

energy development.

The mechanisms underlying displacement or changes in

the spatial ecology of birds at wind energy facilities are
often discussed, but rarely evaluated. Given that prey

species may avoid areas of high predation risk (reviewed by

Lima 1998), changes in predator abundance at wind energy

facilities (e.g., abundance of raptors; Pearce-Higgins et al.

2009) may be important for elucidating displacement

behavior. Similarly, the presence of tall structures (i.e. wind

turbines, power poles) at wind energy facilities that provide

perches for avian predators may increase perceived

predation risk, resulting in avoidance of those sites by

potential prey species (e.g., Stevens et al. 2013). Alterna-

tively, species associated with disturbed ground or gravel

substrates may be attracted to wind energy facilities

through increased opportunities for foraging or nesting

(e.g., Killdeer; Shaffer and Buhl 2016), as has been observed

at disturbance sites with relatively small footprints

associated with other energy sectors (e.g., oil and natural

gas developments; Gilbert and Chalfoun 2011, Ludlow et

al. 2015). Wind turbines may also create barriers, causing

birds to alter their flight patterns to avoid those areas

(Drewitt and Langston 2006).

Increasing evidence suggests that birds may be sensitive to

anthropogenic noise, and that noise from traffic, roads,

aircraft, and energy infrastructure could disrupt acoustic

communication through masking (Ortega 2012). In re-

sponse to anthropogenic noise, birds may alter the

characteristics of their vocalizations to compensate for

masking (e.g., Hu and Cardoso 2010, Francis et al. 2012), or

they may show behavioral avoidance (Bayne et al. 2008,

Blickley et al. 2012, McClure et al. 2013). Recent research

suggests that low-frequency noise produced by wind

turbines may disrupt acoustic communication, causing birds

to modify their vocalization characteristics (Whalen 2015,

Zwart et al. 2016b). These results suggest that noise

associated with wind energy development may disturb birds

and could act as a mechanism driving indirect effects (e.g.,

lekking behavior; Smith et al. 2016). However, the likelihood

of noise as an intermediarymechanism is likely to be species-

specific, depending on the extent of masking (Rheindt 2003).

Solar Energy
Direct effects. Because solar energy development can

occur in areas of high endemism (e.g., the deserts of the

southwestern U.S.), the potential impacts on bird popula-

tions are substantial (Lovich and Ennen 2011). Yet, to our

knowledge, only 1 peer-reviewed study of direct impacts

exists: McCrary et al. (1986) concluded that the risk of

collision with infrastructure at a solar energy facility in the

Mojave Desert, California, was low after documenting 70

mortalities of 26 bird species over a 40-week period. The

facility consisted of mirrors (heliostats) that concentrated

solar energy onto a centrally located tower where liquid
was converted to steam to generate electricity (hereafter

‘solar tower’). More recent preliminary evaluations across 3

different solar energy facilities in southern California

suggest that direct impacts are greater than previously

thought (Kagan et al. 2014), and that installation design

also affects risk. Kagan et al. (2014) considered 3 quite

different installations: solar towers; photovoltaic cells that

convert solar energy directly into electricity; and parabolic

troughs consisting of mirrors that reflect solar energy onto

a receiver tube within the trough which transports heated

fluid to generate electricity. Opportunistic collection of

carcasses at the 3 facilities suggested that mortality rates

were higher at solar towers compared with parabolic

troughs or photovoltaic cells. However, given the lack of

information regarding fatalities at solar energy facilities,

conclusive estimates of mortalities associated with solar

energy facilities cannot be established (Loss et al. 2015).

Two main causes of death have been identified across

solar energy facilities: impact trauma and exposure to

concentrated solar energy (heat) at solar tower facilities

(hereafter, ‘solar flux’; Kagan et al. 2014). In common with

other anthropogenic structures, all types of solar energy

facilities may result in deaths of birds through impact

trauma; solar flux trauma is unique to solar tower facilities.

By damaging feathers (sometimes severely) when birds fly

through areas of concentrated heat near the tower, solar

flux can hinder a bird’s ability to fly, induce shock, and

damage soft tissue (Kagan et al. 2014). By impairing flight,

solar flux trauma may increase the risk of direct collision

with infrastructure or the ground, or may reduce a bird’s

ability to forage or evade predators.

Carcasses from a wide range of taxa have been identified

at solar energy facilities (e.g., ducks, wading birds, raptors,
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rails, shorebirds, and songbirds; McCrary et al. 1986, Kagan

et al. 2014). The mortality of an individual of the federally

endangered subspecies of Ridgway’s Rail (Rallus obsoletus

yumanensis) suggests that solar energy facilities may have

important consequences for species of conservation con-

cern. While it appears that many species may be at risk,

relatively high numbers of waterbird carcasses at photovol-

taic cell facilities suggest that waterbirds may be particularly

at risk where infrastructure (i.e. photovoltaic cells) reflects

polarized light, giving the impression of water (Horváth et

al. 2009, 2010). The water retention ponds needed at solar

tower facilities may exacerbate risk by attracting birds to

solar energy facilities, especially in arid landscapes (McCrary

et al. 1986, Kagan et al. 2014). Insects that are apparently

attracted to solar tower facilities may underlie the large

number of aerial insectivores affected by solar flux (Hováth

et al. 2010, Kagan et al. 2014), emphasizing the complex

ecological processes that may contribute to risks to birds.

While the mechanisms underlying mortality events are

sometimes unclear, evidence indicating that solar energy
facilities could be ecological traps (Schlaepfer et al. 2002)

has begun to accrue.

Indirect effects. To our knowledge, only 1 peer-

reviewed study has evaluated the indirect effects of solar
energy development on birds. DeVault et al. (2014)

demonstrated that solar photovoltaic facilities could

potentially alter bird communities: In 5 locations across

the U.S., species diversity was lower at photovoltaic array

sites than in adjacent grasslands (37 vs. 46 species,

respectively). In contrast, bird densities at the same

photovoltaic array sites were more than twice those of

adjacent grasslands. Observations during the study sug-

gested that shade and the provision of perches increased

bird use of the photovoltaic array sites. However, the

results were species specific, with some small songbird

species (e.g., American Robin [Turdus migratorius]) more

abundant at photovoltaic facilities compared with adjacent

grasslands used for habitat comparisons, but corvids and

raptors less abundant. Similarly, raptor abundance was

higher preconstruction compared with postconstruction of

a utility-scale solar energy facility in south-central

California, suggesting avoidance of the facility. In compar-

ison, ravens and icterids increased in abundance during

construction, possibly as a result of increased foraging

opportunities at disturbed sites (J. Smith personal

communication).

Similarly to the effects of wind energy development and

other onshore energy development (e.g., oil and natural gas

development; Kalyn Bogard and Davis 2014, Bayne et al.

2016), the potential indirect effects of solar energy facilities

on birds are likely site-specific. For example, given that the

footprint and configuration of solar energy facilities vary

with the technology used (e.g., photovoltaic facilities are

typically larger than solar tower sites; Hernandez et al.

2014a), indirect effects mediated through habitat loss or

barrier effects are likely dependent on site-specific

infrastructure (Hernandez et al. 2014b). Solar energy

facilities may also disrupt local hydrology through

groundwater extraction or channelization, which could

reduce both food and habitat availability for birds (Grippo

et al. 2015). Such effects are likely amplified at sites where

footprints are large and at facilities that consume large

volumes of groundwater (e.g., parabolic troughs and solar

towers; Hernandez et al. 2014b, Grippo et al. 2015). The

potential for contaminant runoff to indirectly affect birds

also may be elevated at sites with large footprints (Grippo

et al. 2015). Variation in other disturbances (e.g., vehicular

traffic, construction noise, and operations) among sites

could also contribute to site-specific variation in indirect

effects (Lovich and Ennen 2011); we encourage further

exploration of these factors.

Power Lines
Renewable energy facilities often require the construction
of new transmission lines to deliver the energy produced at
the facility to the existing power line network. These
permanent connections may include many kilometers of
lines supported by towers 30–35 m tall, and can traverse
habitats beyond the line of sight from either the renewable
energy facility or from a center of energy consumption.
This is particularly true after ideal siting locations close to
existing lines have been developed; subsequently con-
structed renewable energy facilities can be increasingly
distant from the existing transmission line network,
requiring increasingly longer connections. Transmission
lines are associated with collision mortalities of flying birds
(Rogers et al. 2014, Lobermeier et al. 2015; but see
Luzenski et al. 2016), but renewable energy connections
can be overlooked when investigating direct and indirect
effects of renewable energy facilities.

Direct effects. Avian interactions with transmission
lines appear to affect populations primarily through direct
mortality, although indirect effects of habitat fragmenta-
tion have been hypothesized. Direct collision mortality is
an ongoing concern in many areas of the U.S. (Yee 2008,
Sporer et al. 2013, Luzenski et al. 2016). Collisions are
most often associated with aquatic habitats, where species
with high wing loading, high flight speeds, and poor
maneuverability are common (Shaw et al. 2010, Quinn et
al. 2011, Barrientos et al. 2012). Large, heavy-bodied
species such as swans, pelicans, herons, and cranes are
generally thought to be more susceptible to transmission
line collisions than smaller, more maneuverable species
(APLIC 2012). Nocturnal migrants have not been well
studied, but also may be susceptible, particularly within
migration corridors (Rogers et al. 2014), and especially in
light of their susceptibility to collision with other types of
tall anthropogenic structures (Drewitt and Langston 2008,
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Kerlinger et al. 2010, Gehring et al. 2011). Relatively small
duck and grouse species are also vulnerable to collision
because of their high flight speed, low altitude, and
flocking flight, in which the view of upcoming obstacles
is obscured by leading birds (APLIC 1994, Bevanger and
Brøseth 2004). Transmission lines bisecting daily move-
ment corridors, such as those located between roosting
and foraging sites, have been most associated with avian
collisions (Bevanger and Brøseth 2004, Stehn and Wasse-
nich 2008, APLIC 2012), with risk exacerbated during low
light, fog, and other inclement weather conditions (Saver-
eno et al. 1996, APLIC 2012, Hüppop and Hilgerloh 2012).
Transmission lines are typically constructed with relatively
thin overhead shield wires at the top, and thicker energized
conductors below. Birds appear to see energized conduc-
tors and adjust flight altitudes upward to avoid them,
subsequently colliding with smaller, less visible overhead
shield wires (Murphy et al. 2009, Ventana Wildlife Society
2009, Martin and Shaw 2010). Collision risk may be
further exacerbated for species with narrower fields of
view (Martin and Shaw 2010), but this remains an
important research gap because to date it has been
thoroughly studied only in Kori Bustards (Ardeotis kori),
Blue Cranes (Grus paradisea), and White Storks (Ciconia
ciconia), which are large, collision-prone species. Collision
risk may be mitigated in migrating raptors, which tend to
fly diurnally during good weather (Ligouri 2005) and
appear to detect and avoid transmission lines, even those
located in major migration corridors (Luzenski et al. 2016).

Indirect effects. The indirect effects of transmission lines

are not well studied. Of the existing studies that have

addressed indirect effects, most have considered grouse

(Lammers et al. 2007, Coates et al. 2008, Coates and

Delehanty 2010) or desert tortoises (Gopherus agassizii;

Boarman 2003, Berry et al. 2013), species of conservation

concern potentially preyed upon by corvids and raptors using

utility structures as hunting perches. As power lines have

proliferated, at least some corvid species appear to have

expanded their breeding ranges (Jerzak 2001, Marzluff and

Neatherlin 2006, Dwyer et al. 2013a) or increased their

breeding densities (Coates et al. 2014) through utilizing

power poles for nesting (Fleischer et al. 2008, Howe et al.

2014,Dwyer et al. 2015), possibly leading to indirect effects on

their prey. Recent research suggests that avoidance by

reindeer (Rangifer tarandus) may be linked to their ability

to detect ultraviolet (UV) light emitted by transmission lines

(Tyler et al. 2014). At least some birds also see in the UV

spectrum (Lind et al. 2014), but the potential implications of

this for indirect effects have not been thoroughly investigated.

SYNTHESIS AND SITING GUIDELINES

Our review summarizes existing studies of direct and

indirect effects of energy infrastructure associated with 2

expanding energy sectors (onshore wind and solar), and

indicates ongoing concern about the transmission lines

connecting these facilities to existing electric transmission

lines. This overview demonstrates that both the magnitude

and the mechanisms of direct and indirect effects of

renewable energy infrastructure and the associated power

lines on birds are site- and species-specific (e.g., Villegas-

Patraca et al. 2012, DeVault et al. 2014, Bayne et al. 2016).

However, while we have provided comprehensive coverage

of existing peer-reviewed literature, we stress that existing

gray literature, much of which is held by private energy

companies, would likely shed additional light on the direct

and indirect effects of renewable energy infrastructures.

Thus, increased public availability of privately funded data

is urgently needed (Loss 2016).

Despite highlighting the prevalence of both site- and

species-specific effects, some generalities can be drawn from

our review. Large-bodied species with weakly powered flight,

high wing loading, and relatively low maneuverability appear

to be especially susceptible to the direct effects of tall

structures at energy facilities (e.g., wind turbines and power

poles). This is of concern, given that the sensitivity of such

species at the population level is likely high because of delayed

maturity and low reproductive rates (Dahl et al. 2012, Lovich
2015, Loss 2016). The effects of placement appear to be

important across all energy infrastructure types considered in

this review; infrastructure that bisects regular daily or

migratory flight paths (e.g., turbine lines, transmission lines)

may disproportionately affect birds comparedwith structures

sited outside regular flight paths. The placement of

infrastructure in habitatwith fewnatural tall perches (deserts,

grasslands, sagebrush steppe) may be more disruptive to the

overall ecology of an area than the placement of infrastruc-

ture in habitat previously characterized by natural tall

structures (forests), but further research is needed to explore

these expectations. Given that all infrastructure results in

direct habitat loss, indirect effects that act through the loss or

fragmentation of habitat are likely to occur across all energy

sectors. Similarly, given the potential for energy infrastruc-

ture and power lines to affect the distribution of predators,

predation may be an important mechanism underlying

indirect effects across energy facilities.

When considered together, the direct and indirect

effects at renewable energy facilities and the transmission

lines serving those facilities are likely cumulative and could

be synergistic, especially when facilities are poorly sited

(e.g., in areas of high bird abundance, in regular flight

paths, or where facilities could act as ecological traps).

However, the magnitude of direct effects is likely far less

for energy facilities compared with other anthropogenic

mortality sources in the U.S. (e.g., cats, buildings,

communication towers, and automobiles; Loss et al.

2015), and the indirect effects of wind energy facilities

may be less than those of traditional energy infrastructure
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(Hovick et al. 2014). Nevertheless, the potential for

additional effects of other infrastructure at energy facilities

could further increase direct and indirect effects within an

energy facility’s footprint (e.g., roads: Benı́tez-López et al.

2010; maintenance buildings: Loss et al. 2014).

A critical end-goal for research in this field is to

integrate research findings into mitigation strategies and to

inform siting guidelines. Given the site- and species-

specific nature of the effects of the energy infrastructure

reviewed here, siting guidelines should be carefully

developed in the context of vulnerable species within a

particular geographic area. However, some key generalities

have emerged that should be considered during siting

decisions. We suggest the following: (1) Avoiding areas of

high bird use (e.g., regularly used flight paths, migration

corridors, and aggregation areas); (2) Avoiding areas

inhabited by sensitive species or those of conservation

concern; (3) Avoiding topographical features that promote

foraging or that are used by migrating birds for uplift (e.g.,

the tops of slopes; Kitano and Shiraki 2013); (4) Avoiding

areas of high biodiversity, endemism, and ecological

sensitivity; (5) Developing conservation buffers for vulner-

able species based on thresholds determined through

empirical research; (6) Carefully selecting or modifying

infrastructure to minimize collision risk or indirect effects

(e.g., by the use of flashing red lights and ground devices,

or by employing efficient technology that uses less space;

Kerlinger et al. 2010, Martin 2012); and (7) Curtailing

turbine operation under certain conditions (e.g., fog in the

presence of sensitive species).

We also encourage the use of predictive models to gauge

likely impacts at sites (e.g., Shaw et al. 2010, Dwyer et al.

2013b), and encourage the development and use of

spatially explicit sensitivity maps that incorporate the

distribution of bird populations, key flight paths, habitats,

and risk factors (e.g., Bright et al. 2008, Dwyer et al. 2016,

Pearse et al. 2016).

CONSIDERATIONS FOR FUTURE RESEARCH

The expected trajectory of the renewable energy sector

(both in size and in technological advances) will expand

the geographic area and, thus, habitats impacted by

development. Much research to date has focused on wind

energy development in grassland habitats in the Great

Plains (e.g., LeBeau et al. 2014, Harrison 2015, Winder et

al. 2015) and, to a lesser extent, solar energy development

in the deserts of the southwestern U.S. (McCrary et al.

1986, Kagan et al. 2014). However, interactions between

renewable energy infrastructure and birds are likely

different among habitats (e.g., grasslands vs. woodlands),

and thus continued habitat-specific research is needed.

Because the effects of energy infrastructure on birds may

vary with stage of operation (e.g., during construction,

immediately following construction, and .1 yr postcon-

struction; Madsen and Boertmann 2008, Pearce-Higgins et

al. 2012, Shaffer and Buhl 2016), such studies should be

conducted over an extended period (e.g., 5, 10, or 15 yr).

Studies that enable researchers to separate the effects of

different infrastructure at facilities (e.g., roads, buildings,

and wind turbines) are also encouraged. Given that wind

energy infrastructure is also associated with bat collisions

(e.g., Doty and Martin 2013), future research should seek

to integrate avian and bat monitoring to identify

cumulative effects.

Understanding the mechanisms that underlie the

indirect effects of energy infrastructure on birds is essential

if we are to establish conservation strategies that minimize

potential impacts.While efforts have been made to address

these concerns (Whalen 2015, J. A. Smith personal

observation), the mechanistic drivers of effects are likely

to vary with infrastructure type and across sites. Therefore,

we encourage researchers to adopt mechanistic approach-

es in future studies of indirect effects by designing studies

to reveal important mechanisms. Mechanisms could

include, but are not limited to, changes in predation risk,

food availability, and habitat availability, and avoidance of

physical structures, lights, and UV light. Given that
anthropogenic noise may disturb birds (Slabbekoorn and

Ripmeester 2007, Blickley et al. 2012), we suggest that

studies of energy development and avian interactions

consider the role that infrastructure noise plays in driving

indirect effects. Studies of solar facilities should explore

the mechanisms resulting in avian concentrations at

photovoltaic arrays (e.g., polarized light; Hováth et al.

2009).

Given that siting guidelines are often concerned with

threshold distances (i.e. the distances from energy facilities

at which effects on target species become negligible), we

stress the relevance of using a gradient approach in studies

of avian and energy infrastructure interactions. For

example, by evaluating impacts on target populations at

various distances from energy facilities, threshold distances

can be identified and used to develop biologically

meaningful conservation buffers. Such approaches have

proven valuable in studies of disturbance associated with

roads, urban areas, and oil and gas development (e.g.,

Reijnen et al. 1997, Laurance 2004, Palomino et al. 2007),

and should be integrated into studies of renewable energy

infrastructure (e.g., Winder et al. 2014, Harrison 2015,

Whalen 2015). By centering buffers on sensitive habitat

patches or populations, areas where development should

be avoided can be delineated. However, we note that the

effects of energy infrastructure may not always be detected

via a gradient approach. Instead, the intensity of develop-

ment (e.g., density of wind turbines) may be more

informative (Mahoney and Chalfoun 2016). When possi-

ble, we also encourage implementation of a Before-After-
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Control-Impact (BACI) study design that allows compar-

ison of preconstruction, postconstruction, and control

data, or, better still, an Impact-Gradient-Design (IGD)

study design that incorporates the properties of both a

gradient approach and a BACI study design. When

preconstruction data is not available, control sites away

from the focal energy facility should be considered.

Researchers should also consider the specific biology

(e.g., spatial ecology, life-history strategy) of the focal

species, or focal populations, to sample suitable control

sites.
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Dahl, E. L., K. Bevanger, T. Nygård, E. Røskaft, and B. G. Stokke
(2012). Reduced breeding success in White-tailed Eagles at
Smøla windfarm, western Norway, is caused by mortality and
displacement. Biological Conservation 145:79–85.

De Lucas, M., M. Ferrer, M. J. Bechard, and A. R. Muñoz (2012).
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(2015). Effects of wind farms on Montagu’s Harrier (Circus
pygargus) in southern Spain. Biological Conservation 191:
452–458.
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Hüppop, O., and G. Hilgerloh (2012). Flight call rates of migrating
thrushes: Effects of wind conditions, humidity and time of
day at an illuminated offshore platform. Journal of Avian
Biology 43:85–90.

Jerzak, L. (2001). Synurbanization of the magpie in the Palearctic.
In Avian Ecology and Conservation in an Urbanizing World (J.
M. Marzluff, R. Bowman, and R. Donnelly, Editors). Kluwer
Academic, Norwell, MA, USA. pp. 403–425.

Johnson, G. D., W. P. Erickson, M. D. Strickland, M. F. Shepherd, D.
A. Shepherd, and S. A. Sarappo (2002). Collision mortality of
local and migrant birds at a large-scale wind-power
development on Buffalo Ridge, Minnesota. Wildlife Society
Bulletin 30: 879–887.

Johnston, N. N., J. E. Bradley, and K. A. Otter (2014). Increased
flight altitudes among migrating Golden Eagles suggest
turbine avoidance at a Rocky Mountain wind installation.
PLOS One 9:e93030. doi:10.1371/journal.pone.0093030

Kagan, R. A., T. C. Viner, P. W. Trail, and E. O. Espinoza (2014).
Avian Mortality at Solar Energy Facilities in Southern
California: A Preliminary Analysis. National Fish and Wildlife
Forensics Laboratory, Ashland, OR, USA. http://www.
ourenergypolicy.org/avian-mortality-at-solar-energy-
facilities-in-southern-california-a-preliminary-analysis/

Kalyn Bogard, H. J., and S. K. Davis (2014). Grassland songbirds
exhibit variable responses to the proximity and density of
natural gas wells. Journal of Wildlife Management 78:471–
482.

Kerlinger, P., J. L. Gehring, W. P. Erickson, R. Curry, A. Jain, and J.
Guarnaccia (2010). Night migrant fatalities and obstruction
lighting at wind turbines in North America. Wilson Journal of
Ornithology 122:744–754.

Kitano, M., and S. Shiraki (2013). Estimation of bird fatalities at
wind farms with complex topography and vegetation in
Hokkaido, Japan. Wildlife Society Bulletin 37:41–48.

Lammers, W. M., M. W. Collopy, and B. Comstock (2007).
Interactions between avian predators and Greater Sage-
Grouse before and after construction of an overhead electric
transmission line in northern Nevada. Great Basin Birds 9:43–
51.

Larsen, J. K., and J. Madsen (2000). Effects of wind turbines and
other physical elements on field utilization by Pink-footed
Geese (Anser brachyrhynchus): A landscape perspective.
Landscape Ecology 15:755–764.

Laurance, S. G. W. (2004). Responses of understory rain forest
birds to road edges in central Amazonia. Ecological
Applications 14:1344–1357.

LeBeau, C. W., J. L. Beck, G. D. Johnson, and M. J. Holloran (2014).
Short-term impacts of wind energy development on Greater
Sage-Grouse fitness. Journal of Wildlife Management 78:522–
530.

Ligouri, J. (2005). Hawks from Every Angle: How to Identify
Raptors in Flight. Princeton University Press, Princeton, NJ,
USA.

Lima, S. L. (1998). Nonlethal effects in the ecology of predator–
prey interactions. BioScience 48:25–34.

Lind, O., M. Mitkus, P. Olsson, and A. Kelber (2014). Ultraviolet
vision in birds: The importance of transparent eye media.
Proceedings of the Royal Society of London, Series B 281:
20132209. http://dx.doi.org/10.1098/rspb.2013.2209

Lobermeier, S., M. Moldenhauer, C. M. Peter, L. Slominski, R. A.
Tedesco, M. V. Meer, J. F. Dwyer, R. E. Harness, and A. H.
Stewart (2015). Mitigating avian collision with power lines: A
proof of concept for installation of line markers via
unmanned aerial vehicle. Journal of Unmanned Vehicle
Systems 3:1–7.

Loesch, C. R., J. A. Walker, R. E. Reynolds, J. S. Gleason, N. D.
Niemuth, S. E. Stephens, and M. A. Erickson (2013). Effect of
wind energy development on breeding duck densities in the
Prairie Pothole region. Journal of Wildlife Management 77:
587–598.

Loss, S. R. (2016). Avian interactions with energy infrastructure in
the context of other anthropogenic threats. The Condor:
Ornithological Applications 118:424–432.

Loss, S. R., T. Will, S. S. Loss, and P. P. Marra (2014). Bird–building
collisions in the United States: Estimates of annual mortality
and species vulnerability. The Condor: Ornithological Appli-
cations 116:8–23.

Loss, S. R., T. Will, and P. P. Marra (2013). Estimates of bird
collision mortality at wind facilities in the contiguous United
States. Biological Conservation 168:201–209.

Loss, S. R., T. Will, and P. P. Marra (2015). Direct mortality of birds
from anthropogenic causes. Annual Review of Ecology,
Evolution, and Systematics 46:99–120.

Lovich, J. E. (2015). Golden Eagle mortality at a wind-energy
facility near Palm Springs, California. Western Birds 46:76–80.

Lovich, J. E., and J. R. Ennen (2011). Wildlife conservation and
solar energy development in the desert Southwest, United
States. BioScience 61:982–992.

Ludlow, S. M., R. M. Brigham, and S. K. Davis (2015). Oil and
natural gas development has mixed effects on the density
and reproductive success of grassland songbirds. The
Condor: Ornithological Applications 117: 64–75.

Luzenski, J., C. E. Rocca, R. E. Harness, J. L. Cummings, D. D.
Austin, M. A. Landon, and J. F. Dwyer (2016). Collision
avoidance by migrating raptors encountering a new electric
power transmission line. The Condor: Ornithological Appli-
cations 118:402–410.

Madsen, J., and D. Boertmann (2008). Animal behavioral
adaptation to changing landscapes: Spring-staging geese
habituate to wind farms. Landscape Ecology 23:1007–1011.

Mahoney, A., and A. Chalfoun (2016). Reproductive success of
Horned Lark and McCown’s Longspur in relation to wind
energy infrastructure. The Condor: Ornithological Applica-
tions 118:360–375.

Marques, A. T., H. Batalha, S. Rodrigues, H. Costa, M. J. R. Pereira,
C. Fonseca, M. Mascarenhas, and J. Bernardino (2014).
Understanding bird collisions at wind farms: An updated
review on the causes and possible mitigation strategies.
Biological Conservation 179:40–52.

Martin, G. R. (2011). Understanding bird collisions with man-
made objects: A sensory ecology approach. Ibis 153:239–254.

Martin, G. R. (2012). Through birds’ eyes: Insights into avian
sensory ecology. Journal of Ornithology 153 (Supplement 1):
S23–S48.

Martin, G. R., and J. M. Shaw (2010). Bird collisions with power
lines: Failing to see the way ahead? Biological Conservation
143:2695–2702.

Martin, G. R., S. J. Portugal, and C. P. Murn (2012). Visual fields,
foraging and collision vulnerability in Gyps vultures. Ibis 154:
626–631.

The Condor: Ornithological Applications 118:411–423, Q 2016 Cooper Ornithological Society

J. A. Smith and J. F. Dwyer Energy infrastructure and birds 421



Marzluff, J. M., and E. Neatherlin (2006). Corvid response to
human settlements and campgrounds: Causes, consequenc-
es, and challenges for conservation. Biological Conservation
130:301–314.

McClure, C. J. W., H. E. Ware, J. Carlisle, G. Kaltenecker, and J. R.
Barber (2013). An experimental investigation into the effects
of traffic noise on distributions of birds: Avoiding the
phantom road. Proceedings of the Royal Society of London,
Series B 280:20132290. http://dx.doi.org/10.1098/rspb.2013.
2290

McCrary, M. D., R. L. McKernan, R. W. Schreiber, W. D. Wagner,
and T. C. Sciarrotta (1986). Avian mortality at a solar energy
power plant. Journal of Field Ornithology 57:135–141.

McNew, L. B., L. M. Hunt, A. J. Gregory, S. M. Wisely, and B. K.
Sandercock (2014). Effects of wind energy development on
nesting ecology of Greater Prairie-Chickens in fragmented
grasslands. Conservation Biology 28:1089–1099.

Morinha, F., P. Travassos, F. Seixas, A. Martins, R. Bastos, D.
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